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Abstract. In this work, we address the problem of blind separation
of non-synchronous statistically independent sources from underdeter-
mined mixtures. A deterministic tensor-based receiver exploiting symbol
rate diversity by means of parallel deflation is proposed. By resorting
to bank of samplers at each sensor output, a set of third-order tensors
is built, each one associated with a different source symbol period. By
applying multiple Canonical Decompositions (CanD) on these tensors,
we can obtain parallel estimates of the related sources along with
an estimate of the mixture matrix. Numerical results illustrate the
bit-error-rate performance of the proposed approach for some system
configurations.

Keywords: Blind source separation, underdetermined mixtures,
non-synchronous sources, tensor decomposition, parallel deflation.

1 Introduction

Blind Source Separation (BSS) and Blind Identification (BI) of underdetermined
mixtures have now become classical problems in signal processing and telecom-
munications. A large part of the related algorithms resorts to Higher Order
statistics, notably by exploiting the multilinear properties of cumulant tensors.
For instance, FOOBI-1 and FOOBI-2 [1] algorithms are based on fourth order
statistics whereas the 6-BIOME algorithm (also referred to as BIRTH) [2] relies
on sixth order cumulants.

In many applications, the sources are known to be cyclostationnary. Indeed,
this property appears as soon as digital communication signals are oversampled.
In particular, the behavior of second- and fourth-order BSS algorithms in a
cyclostationary context has been addressed in [3]. A partially unbiased estimator
of the sixth-order cumulant tensor has been later proposed in [4] by taking
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into account the knowledge of the source cyclic frequencies. More generally,
algorithms exploiting the cyclostationarity property resort to statistical tools.

In this study, we address the problem of underdetermined BSS and BI in
the cyclostationary context by using a deterministic tensor-based receiver. Sev-
eral methods have been proposed in the literature in order to solve BI and BSS
problem using different multilinear models [5,7,8]. All of these works assume syn-
chronous sources. This assumption is often unrealistic in non-cooperative systems
(e.g. interception). The proposed receiver assumes non-synchronous sources. It
consists of using a bank of sampling chains at each receive sensor, each one being
adapted to the symbol rate of a given source, which are assumed to be known
or estimated. At the output of the sampling stage, a set of third-order tensors
is built, each one associated with a different sampling rate. As a consequence,
we can obtain as many tensors as pre-detected sources. By applying successive
canonical decompositions (CanD) [9] of these tensors, we obtain successive esti-
mates of the related sources along with a mixture estimate. This approach can
be connected to the parallel deflation method proposed in [10,11].

This paper is organized as follows. In Section 2, we introduce the system
model. In Section 3, a tensor-based formulation of the received data model is
given and the proposed parallel deflation receiver is presented. Section 4 presents
our simulation results and the paper is concluded in Section 5.

2 System Model

Let us consider a uniform linear array of I sensors receiving signals from P
sources. Let {sp(t)} be the information-bearing signal of the p-th source, ai,p be
the sensor response of the i-th sensor to the p-th source, and hp(t) the time-
domain signature of the p-th source, which comprises channel fading, transmit
and receive filter responses. The baseband-equivalent signal received at the i-th
sensor can be written, in absence of noise, as:

yi(t) =
P∑

p=1

ai,pxp(t), (1)

where xp(t) =
N−1∑
n=0

hp(t − nTp)sp(n). Suppose that the P sources have different

symbol rates 1/Tp, where Tp is the symbol period of the p-th source. By sampling
the received signal {yp(t)} at a reference sampling rate 1/Ts, we obtain:

yi(mTs) =
P∑

p=1

ai,p

(
N−1∑

n=0

hp(mTs − nTp)sp(nTs)

)
, (2)

where m = 0, . . . , M −1, and M corresponds to the number of collected samples
of the received signal. We assume that hp(t) is zero outside an interval [0, Kp),
Kp < Tp, p = 1, . . . , P , which means that the channel of each of the sources
has no temporal dispersion, i.e. we have an instantaneous mixture of sources,
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or a flat-fading channel in communications terminology. Let us assume that the
source symbol periods are organized in increasing order, i.e. Ts = T1 < T2 <
. . . < TP , where the symbol period of the first source is assumed to be equal to
the reference sampling period. The received signal samples are collected during
a fixed observation window of MTs seconds, regardless of the used sampling
period. Therefore, when sampling at a rate 1/Tj associated with the j-th source,
the number Mj of collected received signal samples is given by:

Mj =
⌈
M

(
Ts

Tj

)⌉
=

⌈
M

αj

⌉
, αj ∈ R

+. (3)

Now, suppose that the sampling rate 1/Ts at the receiver is L times higher than
the p-th source symbol rate, i.e. Ts = Tp/L. This means that the received data
is oversampled by a factor of L w.r.t. the p-th source. Then, (2) is equivalent to
the following model:

yi

(
(mj + l/L)Tj

)
=

P∑

p=1

ai,php(lTj/L)sp(mjTj), (4)

mj = 0, . . . , Mj − 1, l = 0, . . . , L− 1, j = 1, . . . , P . Suppressing the term Tj, (4)
can be simplified to:

y
(j)
i (mj + l/L) =

P∑

p=1

ai,ph
(j)
p (l/L)s(j)

p (mj), (5)

where y
(j)
i (mj +l/L) .= yi

(
(mj +l/L)Tj

)
, h

(j)
p (l/L) .= hp(lTj/L), and s

(j)
p (mj)

.=
sp(mTj). Note that h

(j)
p (l/L) is the l-th polyphase component of the p-th source

channel impulse response obtained by resampling the original channel impulse
response at a factor of L times the j-th source symbol rate. Likewise, s

(j)
p (mj)

is obtained by resampling the p-th source symbol sequence at the j-th source
symbol rate.

3 Parallel Deflation Receiver

In this section, we show that the received signal model given by (5) can be
formulated as a third-order CanD model. Let ai,p , h̄

(j)
l,p

.= h
(j)
p ((l − 1)/L) and

s̄
(j)
m,p

.= s
(j)
p (mj − 1) be, respectively, the entries of the matrices A ∈ C

I×P ,
H̄(j) ∈ C

L×P , and S̄(j) ∈ C
Mj×P collecting sensor responses, channel coefficients

and transmitted symbols. Define ȳ
(j)
i,mj ,l

.= yi

(
(mj +(l−1)/L)Tj

)
as the (i, mj, l)-

th entry of a third-order tensor Ȳ(j) ∈ C
I×Mj×L collecting the overall received

signal sampled at a rate of Tj/L, i ∈ [1, I], mj ∈ [1, Mj], l ∈ [1, L]. With these
definitions, we can rewrite (4) as a CanD model:

ȳ
(j)
i,mj ,l =

P∑

p=1

ai,ps̄
(j)
mj ,ph̄

(j)
l,p , j = 1, . . . , P, (6)
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or, alternatively, in unfolded matrix forms:

Ȳ(j)
1 = (H̄(j) � S̄(j))AT ∈ C

LMj×I (7)

Ȳ(j)
2 = (A � H̄(j))S̄(j)T ∈ C

IL×Mj (8)

Ȳ(j)
3 = (S̄(j) � A)H̄(j)T ∈ C

MjI×L, (9)

where � denotes the Khatri-Rao (columnwise Kronecker) product.
Therefore, by performing P sampling operations over the received signal, each

one w.r.t. a different source symbol rate, we can construct P different CanD
tensors Ȳ(1), . . . , Ȳ(P ), each one of which will be associated with the detection of
a given source. Note that only the j-th column of S̄(j) contains useful information
(in this case it contains the j-th source symbol sequence). Due to the symbol rate
mismatch between sources, the remaining P −1 columns of S̄(j) only correspond
to structured noise generated by the corresponding sources.

The proposed method to blindly extract the source signals (as well as to
estimate the sensor and channel responses), is to fit each of the received signal
tensors Ȳ(1), . . . , Ȳ(P ) to its associated third-order CanD tensor model in the
least squares (LS) sense using the unfolded factorizations (7)-(9). In this case,
the tensor-based detection has P processing stages. At each stage, we can use,
for instance, the alternating least squares (ALS) algorithm, which consists of
alternated estimations of the sensor, symbol and channel matrices according to
the following criterion [5]:

min
{Â,̂̄S

(j)
, ̂̄H

(j)}
‖Y(j) −

P∑

p=1

ap ◦ s̄(j)
p ◦ h̄(j)

p ‖2, j = 1, . . . , P. (10)

Note that we need to process all the P tensors Ȳ(1), . . . , Ȳ(P ) in order to extract
the symbol sequence of all the sources. Of course, this is due to the fact that
only the j-th source symbol sequence can be extracted from Ȳ(j), the remaining
symbol sequences appear only as structure interference due to source symbol
rate mismatch.

Uniqueness Issue
The CanD model (6) representing the received signal tensor Ȳ(j) ∈ C

I×Mj×L

enjoys the essential uniqueness property, which means that {A, S̄(j), H̄(j)} and

{Â, ̂̄S
(j)

, ̂̄H
(j)} giving rise to the same tensor Ȳ(j) are linked by the following

relations Â = AΠΔΠΔΠΔA, ̂̄S
(j)

= CΠΔΠΔΠΔS , ̂̄H
(j)

= H̄(j)ΠΔΠΔΠΔH , with ΔΔΔAΔΔΔSΔΔΔH = IP ,
where ΠΠΠ is a permutation matrix whereas ΔΔΔA,ΔΔΔS , andΔΔΔH are diagonal matrices.
A sufficient condition for such an uniqueness was first established in [6] and
generalized in [5] to the complex case. This condition states that the CanD
model (6) is essentially unique if kA + kS̄(j) + kH̄(j) ≥ 2(P + 1), where kA

denotes the Kruskal-rank, also called k-rank, of A, i.e. the greatest integer kA

such that any set of kA columns of A is linearly independent. The rank and the
Kruskal-rank of A are related by the inequality kA ≤ rank(A). Assuming that
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Fig. 1. Block-diagram of the proposed tensor-based parallel deflation receiver

A, S̄(j) and H̄(j) are full rank matrices, the Kruskal-rank and the rank coincide,
so that

min(I, P ) + min(Mj, P ) + min(L, P ) ≥ 2(P + 1) (11)

ensures the essential uniqueness of the CanD model (6) for the received signal
tensor sampled at a rate of Tj/L.

In this work, we are interested in the case of underdetermined mixtures (i.e.
more sources than sensors). According to condition (11), if Mj ≥ P and L ≥ P ,
then I = 2 sensors are enough to blindly separate P sources.

Tensor-based algorithm for parallel deflation

* Here, we describe the j-th step of the algorithm which corresponds to the extraction
of the j-th source. This process has to be repeated for j = 1, . . . , P :

1. Resample the output signal of each sensor at the frequency L/Tj ;
2. Build the three-way tensorȲ(j) ∈ C

L×Mj×I suitable for the j-th source;

3. Estimate loadings matrices Â, ̂̄S
(j)

, ̂̄H
(j)

describing the CanD of tensor Ȳ(j) by
minimizing criterion (10) in the LS sense (e.g. using the ALS algorithm [5]);

4. Evaluate and compare the “discrete” structure of each column of ̂̄S
(j)

=

[̂s̄
(j)
1 , . . . , ̂̄s(j)

P ] in order to choose the suitable vector corresponding to the j-th
source;

Remark 1: In addition to blind source separation, this algorithm also provides
an estimation of the mixing matrix. A natural approach consists of estimating
one column of matrix A at each deflation layer. Since only a single source is
extracted at each detection layer, we eliminate the inherent column permutation
ambiguity that would exist in a joint CanD estimation of equal symbol rate
sources. The mixture identification problem will be addressed in a future work.
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4 Performance Evaluation

In this section, computer simulation results are provided for the performance
evaluation of the proposed tensor-based deflation receiver in a wireless commu-
nication system. The receiver is equipped with a uniform linear array of half-
wavelength spaced sensors. The propagation channel associated with each source
is characterized by a complex envelope, an angle of arrival and a delay of ar-
rival (assumed to be negligible with respect to the symbol source period). All
these parameters are assumed to be constant during a data block of duration
MTs seconds. At each sensor, the received signal is sampled at the Nyquist rate
at the input of each deflation layer, i.e. Te = Tj/2, j = 1, . . . , P . The trans-
mit/receive filters are raised cosines with roll-off factor 0.3. We assume binary
phase shift keying (BPSK) modulation for all the sources. The sources carrier
residues are assumed to be negligible. Additive noise samples are modeled as
complex Gaussian random variables with equal variance for all the sensors.

We compute the bit error rate (BER) for several signal-to-noise ratios (SNR)
and for different system parameters (number of sources, number of sensors, sam-
pling factor and data block size). The results are validated from 1000 Monte-
Carlo runs. Each run is associated with a different realization of the source symbol
vectors, mixing matrix, noise tensor, angles of arrival, complex envelopes and
the ratio of source symbol periods. The angles of arrival of the sources are ran-
domly drawn between 0 and 80o according to a uniform distribution. The symbol
period T1 of source 1 is taken as the reference sampling period, while those of
the remaining sources (T2, . . . , TP ) are randomly varied at each run are given by
Tp = T 0

p ±Δp, p = 2, . . . , P , where T 0
p is the median value of the p-th source sym-

bol period, and Δp is a random variable uniformly distributed between [0, 1/2],
which is assumed to be the same for all the sources. Our simulations suppose that
T1, . . . , TP are known or have been estimated in a previous processing stage. The
estimation of the symbol period is outside the scope of this paper. However, the
methods proposed in [12,13] can be applied in this context. We consider two un-
derdetermined mixture setups: i) 3 sources and 2 sensors and ii) 4 sources et 3 sen-
sors. We define Ȳ(j) ∈ C

L×Mj×I as the noise free data tensor built from the j-th
sampler output L/Tj. The noise samples are stored in a tensor N (j) ∈ C

L×Mj×I ,
so that the received data tensor ˜̄Y(j) is given by ˜̄Y(j) = Ȳ(j) + N (j). The SNR is
defined as SNR = 10log10

‖Ȳ(j)‖2
F

‖N (j)‖2
F

(dB), where the variance of N (j) is computed
in order to obtained the desired SNR level.

We first show the BER performance of the proposed receiver in the underde-
termined case of 3 sources and 2 sensors (P = 3, I = 2). The data block size
is equal to 100 samples for source 1 (deflation layer 1). Since the length of the
considered data block is fixed to M = M1 = 100 for source 1, the number of
samples M2, . . . , MP processed by layers 2 to P is lower than 100 and depends
on the source symbol period ratios each run. The average BER values are com-
puted over the 1000 runs and the P sources. These values are reported in Table 1
for different SNR’s and sampling factors. Herein, the source symbol periods are
given by T1 = Te, T2 = (1.5±Δ2)Te, T3 = (2.5±Δ3)Te, where Δ2 et Δ3 follow
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Table 1. Effect of sampling factor and SNR on the average BER (P = 3, I = 2)

SNR (dB) Oversampling factor

L = 3 L = 4 L = 6 L = 8

0 0.2501 0.1868 0.1491 0.0688

5 0.1633 0.0852 0.0855 0.0398

10 0.1125 0.0553 0.0541 0.0334

15 0.0957 0.0418 0.0409 0.0322

20 0.0809 0.0390 0.0410 0.0294

Table 2. Average BER or the best estimated source (BERmax) and for the worst
estimated sources (BERmin) computed over 1000 Monte-Carlo runs (N = 50, L = 4)

SNR (dB) System configuration

P = 3, I = 2 P = 4, I = 3

BERmax BERmin BERmax BERmin

0 0.2222 0.1253 0.2637 0.1495

5 0.1179 0.0427 0.1670 0.0620

10 0.0837 0.0161 0.1383 0.0345

15 0.0621 0.0121 0.1328 0.0332

20 0.0587 0.0092 0.1421 0.0384

Table 3. Comparison with the MAP estimator (P = 3, I = 2, SNR=25dB)

Configuration

P = 6, N = 50 P = 6, N = 100 P = 8, N = 100

CanD deflation 0.023 0.025 0.013

MAP estimator 0.014 0.020 0.005

an uniform distribution in the range [0, 0.5]. One can first note a significant
degradation of the BER when the sampling factor is equal to 3. Better results
can be obtained by increasing the sample factor. Only a slight improvement is
observed for L = 4 and L = 6, although satisfying results are obtained for L = 8.
Table 2 compares the average BER values of the best estimated source with the
worst estimated one. The data block size and the sampling factor are fixed to
N = 100 and L = 4, respectively. We now consider two cases: (P = 3, I = 2)
and (P = 4, I = 3). In the first case, the source symbol periods are T1 = Te,
T2 = (1.5 ± Δ2)Te, T3 = (2.5 ± Δ3)Te. In the second case, we have T1 = Te,
T2 = (1.4 ± Δ2)Te, T3 = (1.8 ± Δ3)Te, T4 = (2.2 ± Δ4)Te. We can note sig-
nificant performance deviations between different deflation layers. One should
note that the symbol period ratios between different sources are changed at each
Monte Carlo run. Thus, when any two sources have very close symbol periods,
their parallel extraction becomes more difficult and performance will be affected.
With an eye to a reference comparison, we have also simulated the maximum-a-
posteriori (MAP) estimator based on the estimated channel, for L = 3, I = 2 and
SNR=20dB. According to Table 3 the performance gap between both receivers
is not significant for (P = 6, N = 50) and (P = 6, N = 100).
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5 Conclusions and Perspectives

We have proposed a new deterministic tensor-based receiver for blind source
separation and channel identification in the case of underdetermined mixtures.
The proposed receiver efficiently exploits symbol rate diversity and uses a CanD-
based parallel deflation approach to individually extract each source. According
to our results, satisfactory performances can be obtained, especially when the
source symbol rates are not too close. In addition to source separation, our
approach allows to blindly estimate the full mixture matrix either jointly or sep-
arately for each source. Perspectives include comparisons with existing statistical
BSS/BI approaches and a generalization to convolutive mixtures.
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