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Abstract. In this paper we propose a new algorithm for the joint eigen-
value decomposition of a set of real non-defective matrices. Our approach
resorts to a Jacobi-like procedure based on polar matrix decomposition.
We introduce a new criterion in this context for the optimization of the
hyperbolic matrices, giving birth to an original algorithm called JDTM.
This algorithm is described in detail and a comparison study with ref-
erence algorithms is performed. Comparison results show that our ap-
proach provides quicker and more accurate results in all the considered
situations.

Keywords: Joint diagonalization by similarity, joint eigenvalue decom-
position, Jacobi method, polar matrix decomposition.

1 Introduction

In this study, we investigate the problem of Joint EigenValue Decomposition
(JEVD) of a set of real matrices, which is encountered in different contexts such
as 2-D DOA estimation [1], joint angle-delay estimation [2], multidimensional
harmonic retrieval [3], Independent Component Analysis (ICA) [4] or Multi-way
analysis [5]. JEVD consists in finding an eigenvector matrix A from a set of
non-defective matrices M (k) verifying:

∀k = 1 · · ·K, M (k) = AD(k)A−1, (1)

where the K diagonal matrices D(k) are unknown.
This problem should not be confused with the classical problem of Joint Di-

agonalization by Congruence (JDC), for which A−1 is replaced by AT, except
when A is an orthogonal or unitary matrix [6]. JDC is the core of many ICA
algorithms [7,8]. A large majority of these algorithms resorts to a suitable factor-
ization of A, performed by means of a Jacobi-like procedure. Such an approach
has been naturally adapted to JEVD, although few papers have addressed this
problem. Two main kinds of Jacobi-like algorithms have been developed in this
context, based on different matrix factorizations. Originally, several authors had
recourse to the QR factorization of A in order to compute the different sets
of eigenvalues [3, 9]. Arguing that these QR-algorithms suffer from convergence
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problems, Fu and Gao proposed an effective sh-rt algorithm [10] based on the
polar decomposition. Indeed the polar decomposition has been used favourably
for eigenvalue decomposition purpose since a long time [11, 12, 13] and also for
JDC [14]. In a recent paper, Iferroudjene et al. introduced an alternative version
of the sh-rt algorithm called JUST [15]. Our turn, we propose in this work an
improvement of the sh-rt technique with significant numerical results.

2 Notations

In the following, scalars, vectors and matrices are denoted by lower case (a),
lower case boldface (a) and upper case boldface (A) letters, respectively. The
i-th entry of vector a is denoted by ai while Aij is the (i, j)-th component of
matrix A. Diagonal matrices are denoted by D, Givens and hyperbolic rotation
matrices are denoted by G and H , respectively. For instance G(θij) and H(φij)
are equal to the identity matrix, at the exception of the following components:

G(θij)ii = cos(θij); G(θij)ij = sin(θij). H(φij)ii = cosh(φij); H(φij)ij = sinh(φij).
G(θij)ji = − sin(θij); G(θij)jj = cos(θij). H(φij)ji = sinh(φij); H(φij)jj = cosh(φij).

3 A Novel Algorithm for JEVD

3.1 A Jacobi-Like Computation of the Polar Matrix Decomposition

In this subsection, all matrices are square matrices of dimensions N . Polar matrix
decomposition states that any non-singular real matrix can be factorized into
the product of an orthogonal matrix Q and a positive symmetric matrix S.
It is well known that Q can be decomposed into a product of Givens rotation
matrices and a unitary diagonal matrix. In the same way, it has been shown
that S can be decomposed into a product of hyperbolic rotation matrices and
diagonal matrices [14]. Since (1) admits a scaling indeterminacy, the eigenvector
matrix can only be estimated up to a diagonal scaling matrix. Therefore, taking
into account that diagonal, hyperbolic and Givens matrices commute, one can
reasonably assume that a solution matrix A can be found as a product of Givens
and hyperbolic rotation matrices:

A =
N−1∏

i=1

N∏

j=i+1

G(θij)H(φij). (2)

The main point is that any Givens or hyperbolic matrix is defined by only one
parameter (angle). Therefore we have now to find a set of M = N(N − 1)/2
couple of parameters {θij , φij}1≤i<j≤N in order to get (1). Jacobi-like procedures
achieve this problem by optimizing a suitable criterion with respect to each
parameter, one by one. Consequently, inserting (2) into (1) we get:

∀k = 1 · · ·K, D(k) =

(
M∏

m=1

H(φm)−1G(θm)T

)
M (k)

(
M∏

m=1

G(θm)H(φm)

)
,

(3)
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where each index m (m = 1 · · ·M) corresponds to a couple (i, j) (1 ≤ i < j ≤ N).
Then, the algorithm scheme is simple. It consists in iteratively diagonalizing the
M (k) matrices by a successive optimization with respect to G(θm) and H(φm):

∀k = 1 · · ·K, M (k,0) = M (k), (4)

∀k = 1 · · ·K, ∀m = 1 · · ·M, N (k,m) = G(θm)TM (k,m−1)G(θm), (5)

∀k = 1 · · ·K, ∀m = 1 · · ·M, M (k,m) = H(φm)−1N (k,m)H(φm). (6)

Thereby, at each stage m, the optimal corresponding Givens and hyperbolic
matrices are successively computed in order to get K diagonal matrices M (k,M)

at the end of the process.

3.2 Optimization Step

A natural criterion to compute the optimal m-th Givens angle θm is thus to
minimize the sum of the euclidean norms of the off-diagonal terms of the K
matrices N (k,m):

ζG(θm) =
K∑

k

N,N∑

p,q
p�=q

(
N (k,m)

pq

)2

. (7)

This criterion is the generalization of the original Jacobi criterion to the JD con-
text. Since Givens matrices are orthogonal, the same definition of N (k,m) holds
in both the JDC and JEVD cases and thus the same optimization algorithms can
be used. For instance, our proposed algorithm resorts to the same approach than
the JAD algorithm described in [16] whereas the sh-rt and JUST algorithms use
an other minimization scheme.

Once the optimal Givens matrix G(θm) is computed, different criteria can be
used for the optimal computation of H(φm). This is the main difference between
the three JEVD algorithms. The JUST algorithm resorts to criterion (7) by
replacing N (k,m) by M (k,m), whereas the sh-rt method aims at minimizing the
Frobenius norm of M (k,m).

Instead of minimizing all the (off-diagonal) entries, we propose to target two
particular off-diagonal entries of M (k,m): if m corresponds to the (i, j)i<j couple,
we simply aim at computing the optimal M

(k,m)
ij and M

(k,m)
ji components by

using a "targeting" hyperbolic matrix. It is noteworthy that the transformation
(6) affects the i-th and j-th rows and the i-th and j-th columns of Mk,m but
only the (i, j) and the (j, i) components are twice affected by the hypebolic
matrix and its inverse. Hence our choice to focus on the latter. Therefore, we use
the following alternative criterion ζJDTM

H for the computation of the hyperbolic
matrix:

ζJDTM
H (φm) =

K∑

k

(
M

(k,m)
ij

)2

+
(
M

(k,m)
ji

)2

, (8)

giving birth to our Joint Diagonalization algorithm based on Targeting hyper-
bolic Matrices (JDTM). A similar approach has been used with success in a
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different context [14]. Note that in the case of Givens matrices we showed that
the optimizations of criteria (7) and (8) were mathematically equivalent.

Now, let us look at the components of Mk,m. As previously mentioned, we
only consider the (i, j)-th and (j, i)-th components which are given by:

M
(k,m)
ij =

(
N

(k,m)
ii − N

(k,m)
jj

) sinh(2φm)
2

+N
(k,m)
ij cosh(φm)2−N

(k,m)
ji sinh(φm)2,

(9)

M
(k,m)
ji =

(
Nk,m

jj − N
(k,m)
ii

) sinh(2φm)
2

−N
(k,m)
ij sinh(φm)2 + N

(k,m)
ji cosh(φm)2.

(10)
Furthermore we can write that:

(
M

(k,m)
ij

)2

+
(
M

(k,m)
ji

)2

=

(
M

(k,m)
ij + M

(k,m)
ji

)2

2
+

(
M

(k,m)
ij − M

(k,m)
ji

)2

2
(11)

where the first term of the right-hand side is constant. Indeed, we derive from
(9) and (10) the following equality:

(
M

(k,m)
ij + M

(k,m)
ji

)2

2
=

(
N

(k,m)
ij + N

(k,m)
ji

)2

2
(12)

where the right-hand side clearly does not depend on φm. Thereby minimizing
ζJTDM
H is equivalent to minimize the λ function defined by:

λ(φm) =
K∑

k

(
M

(k,m)
ij − M

(k,m)
ji

)2

. (13)

We denote by y(m) the column vector of �K defined by y
(m)
k = M

(k,m)
ij −M

(k,m)
ji ,

so that λ(φm) = y(m)Ty(m). From (9) and (10) we obtain:

y(m) = W (m)x(φm), (14)

with:

W (m) =

⎡

⎢⎣
N1,m

ii − N1,m
jj N1,m

ij − N1,m
ji

...
...

NK,m
ii − NK,m

jj NK,m
ij − NK,m

ji

⎤

⎥⎦ ; x(φm) =
[

sinh(2φm)
cosh(2φm)

]
.

Now defining the diagonal (2 × 2) matrix J such that J11 = −J22 = −1 and
observing that x(φm)TJx(φm) = 1, we have thus to minimize the quantity
x(φm)TW (m)TW (m)x(φm) under the constraint that x(φm)TJx(φm) = 1. This
can be done using the Lagrange multipliers strategy. Thereby, we have to mini-
mize the L function given by:

L(x(φm), μ(φm)) = x(φm)TW (m)TW (m)x(φm) − μ(φm)x(φm)TJx(φm). (15)
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This leads to:
JW (m)TW (m)x(φm) = μ(φm)x(φm). (16)

Thus,μ(φm) and x(φm) are associated eigenvalue and eigenvector of matrix
JW (m)TW (m) and it is easily shown that λ(φm) = μ(φm). JW (m)TW (m)

is diagonalizable by construction and it can be shown that it has two non-
null eigenvalues of opposite sign (the proof is not given here due to lack of
space). Since the Gram matrix W (m)TW (m) is a positive semi-definite matrix,
x(φm)TW (m)TW (m)x(φm) is positive and hence λ(φm). As a consequence x(φm)
is the eigenvector associated to the positive eigenvalue of JW (m)TW (m). Finally
we have:

φ(m) =
1
2
atanh

(
x(φm)1
x(φm)2

)
. (17)

We have just shown how the Givens and hyperbolic matrices are computed by the
JDTM algorithm for the M couples (i, j). Actually, since the previous procedure
follows an alternate optimization scheme, it has to be repeated several times
before convergence. Each repetition is called a "sweep". In other words, if Ns is
the number of sweeps, A is actually estimated by:

Â =
Ns∏

ns

N−1∏

i=1

N∏

j=i+1

G(θns

ij )H(φns

ij ). (18)

This iterative approach is common to all Jacobi-like algorithms. Finally, the K

matrices, D̂
(k)

= Â
−1

M (k)Â are approximately diagonalized. One can measure
the diagonalization achievement by using the following criterion:

rD =
K∑

k

N,N∑

p,q
p�=q

(
D̂

(k)

pq

)2

. (19)

4 Simulations

The proposed algorithm has been validated and compared to the sh-rt and JUST
algorithms by varying values of i) the Signal-to-Noise Ratio (SNR), ii) the
matrix dimension N and iii) the number K of matrices to be diagonalized.
Three kinds of simulation were conducted in order to quantify the relative effects
of these quantities. The matrix set to be diagonalized is buit according to the
following model:

∀k = 1 · · ·K, M (k) =
X(k)

‖X(k)‖F

+ σ
E(k)

‖E(k)‖F

with X(k) = AD(k)A−1. (20)

A, D(k) and E(k) entries are drawn randomly according to a standard normal
distribution. E(k) simulates a Gaussian additive noise. We define the SNR as
−20 log10(σ). Hence, σ is chosen in order to obtained the desired value of SNR.



560 X. Luciani and L. Albera

At the end of each sweep the euclidean norm of the off-diagonal components
of M (k,M) is computed and compared to the value computed at the previous
sweep. Algorithms are stopped when the relative deviation between two succes-
sive values is smaller than 10−7. Ns is then the number of sweeps needed to
reach the convergence. We define rA as the relative squared error between the
true eigenvector matrix and its estimate after having removed the scaling and
permutation indeterminacies. Therefore, algorithm results are judged according
to three criteria: rD, Ns and rA. Note that the three algorithms have compa-
rable numerical complexities, thereby Ns is a pertinent criterion to judge the
convergence speed.

Each situation is repeated 100 times with a new draw of the A, D(k) and
E(k) matrices at each time. We present here the median values of rD and rA

along with the mean values of Ns obtained from each algorithm.

4.1 Influence of the SNR

This first scenario varies the SNR from 10 dB to 100 dB whereas K and N are
fixed to 50 and 10, respectively. Results are reported in figure 1(a). JDTM and
sh-rt provide very close results in terms of diagonalization achievement whatever
the SNR value, while the JUST algorithm is not as good in case of high SNR. At
the exception of the 10 dB case (for which no algorithm converges) the JDTM
algorithm requires at most half less sweeps than the other algorithms to reach
the convergence. Furthermore, JDTM consistently provides a better estimation
of the eigenvector matrix. Notably, at 20 and 30 dB one can note that at least
50% of the eigenvector matrices are well estimated by the JDTM algorithm,
whereas this is not the case with the other algorithms.

4.2 Influence of the Matrix Size

Now we vary the matrix dimension N from 5 to 60 whereas the size of the matrix
set and the SNR are fixed to 50 and 80 dB respectively. Results are reported in
figure 1(b). JDTM and sh-rt outclass the JUST algorithm. Both provides very
satisfying results, even in the case of large matrices. Diagonalization achievement
of both algorithms are quite similar but the distance between the two curves
increases with the matrix size in favour of the JDTM algorithm. In addition, the
latter needs between 5 to 8 sweeps to converge against 10 to 17 for sh-rt and this
gap also increases with the matrix size. In the same way, the comparison of the
rA median values highlights the efficiency of the JDTM algorithm which clearly
improves sh-rt results, whatever the considered matrix size.

4.3 Influence of the Size of the Matrix Set to Be Diagonalized

Finally we vary the number of matrices from 5 to 40 whereas the matrix size
and the SNR are fixed to 20 and 80 dB, respectively. Results are reported in
figure 1(c). These are similar to those observed previously. The JDTM algorithm
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Fig. 1. Evolution of the three comparison criteria: rD (median values), Ns (mean
values) and rA (median values)

consistently surpasses the other algorithms. Notably, it only requires around 7
sweeps to converge against 13 for sh-rt, whatever the size of the matrix set. In
addition, regarding the eigenvector matrix estimation, the gap observed between
the two curves in favour of the JDTM algorithm gradually increases with the
size of the matrix set.

5 Conclusion

In spite of its simplicity we observed that the proposed algorithm invariably
outperforms the reference algorithms in all the considered situations and ac-
cording to both classical criteria, which are the diagonalization achievement and
the number of sweeps. In addition it has been shown that the JDTM algorithm



562 X. Luciani and L. Albera

also provides a better estimation of the eigenvector matrix. From the presented
results, it notably appears that the JDTM algorithm is a fast algorithm with
a good estimation precision of the eigenvector matrix, particularly in the most
difficult cases. Finally this study also highlights the sensitivity of Jacobi-like
algorithms to the choice of the optimization criterion.

References

1. van der Veen, A.J., Ober, P.B., Deprettere, E.F.: Azimuth and elevation computa-
tion in high resolution DOA estimation. IEEE Trans. Signal Proc. 40, 1828–1832
(1992)

2. Lemma, A.N., van der Veen, A.J., Deprettere, E.F.: Analysis of joint angle-
frequency estimation using ESPRIT. IEEE Trans. Signal Proc. 51, 1264–1283
(2003)

3. Haardt, M., Nossek, J.A.: Simultaneous Schur decomposition of several nonsym-
metric matrices to achieve automatic pairing in multidimensional harmonic retrie-
veal problems. IEEE Trans. Signal Proc. 46, 161–169 (1998)

4. Albera, L., Ferréol, A., Chevalier, P., Comon, P.: ICAR, a tool for blind source
separation using fourth order statistics only. IEEE Trans. Signal Proc. 53(10-1),
3633–3643 (2005)

5. Roemer, F., Haardt, M.: A closed-form solution for multilinear PARAFAC decom-
positions. In: IEEE SAM 2008, pp. 487–491 (2008)

6. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical Methods for Simultane-
ous Diagonalization. SIAM J. Matrix Anal. Applicat. 14 (4), 927–949

7. Yeredor, A.: Non-Orthogonal Joint Diagonalization in the Least-Squares Sense with
Application in Blind Source Separation. IEEE Trans. Signal Proc. 50(7), 1545–1553
(2002)

8. Karfoul, A., Albera, L., Birot, G.: Blind underdetermined mixture identification by
joint canonical decomposition of HO cumulants. IEEE Trans. Signal Proc. 58(2),
638–649 (2010)

9. Strobach, P.: Bi-iteration multiple invariance subspace tracking and adaptive ES-
PRIT. IEEE Trans. Signal Proc. 48, 442–456 (2000)

10. Fu, T., Gao, X.: Simultaneous Diagonalization with Similarity Transformation for
Non-defective Matrices. In: IEEE ICASSP 2006, pp. 1137–1140 (2006)

11. Goldstine, H.H., Horwitz, L.P.: A procedure for the diagonalization of normal ma-
trices. J. ACM 6(2), 176–195 (1959)

12. Eberlein, P.J.: A Jacobi-like method for the automatic computation of eigenvalues
and eigenvectors of an arbitrary matrix. Journal of the Society for Industrial and
Applied Mathematics 10(1), 74–88 (1962)

13. Ruhe, A.: On the quadratic convergence of a generalization of the Jacobi method
to arbitrary matrices. BIT Numerical Mathematics 8, 210–231 (1968)

14. Souloumiac, A.: Nonorthogonal joint Diagonalization by Combining Givens and
Hyperbolic Rotations. IEEE Trans. Signal Proc. 57(6), 2222–2231 (2009)

15. Iferroudjene, R., Abed Meraim, K., Belouchrani, A.: A New Jacobi-like Method for
Joint Diagonalization of Arbitrary non-defective Matrices. Applied Mathematics
and Computation 211, 363–373 (2009)

16. Cardoso, J.-F., Souloumiac, A.: Jacobi Angles for Simultaneous Diagonalization.
SIAM Journal on Matrix Analysis and Applications 17(1), 161–164 (1996)


	Joint Eigenvalue Decomposition Using Polar Matrix Factorization
	Introduction
	Notations
	A Novel Algorithm for JEVD
	A Jacobi-Like Computation of the Polar Matrix Decomposition
	Optimization Step

	Simulations
	Influence of the SNR
	Influence of the Matrix Size
	Influence of the Size of the Matrix Set to Be Diagonalized

	Conclusion
	References


