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ABSTRACT called JET (Joint Eigenvalue decomposition algorithm dase
A semi-algebraic algorithm based on Joint EigenValue Deon Triangular matrices).
composition (JEVD) is proposed to compute the CP de-
composition of multi-way arrays. The iterative part of the 2. JOINT EIGENVALUE DECOMPOSITION
method is thus limited to the JEVD computation. In addition
it involves less restrictive hypothesis than other recentis  |n the following, the subset dfl included in[x; y] is denoted
algebraic approaches in many situations. We also propossy [z: y|n.
an original JEVD technique based on th&/ factorization. The JEVD problem consists in finding an eigenvector ma-
Numerical examples highlight the main advantages of theix A from a set of non-defective matricad %) verifying:
proposed methods to solve both the JEVD and CP decompo-
sition problems.

Index Terms— Tensor, CP, PARAFAC, joint eigenvalue Where the diagonal matricesD® are unknown. It can

Vk € [1; K|y, M%) = AD® AT (1)

decomposition, semi-algebraic method. be shown that the JEVD is unique up to a permutation and
a scaling of the columns ol within conditions on matrices
k
1. INTRODUCTION D" [11].

Although it is encountered in other contexts such as 2-D

Tensor or multi-way array decompositions are used in nuPOA estimation [12], few authors have addressed the JEVD
merous application areas such as Psycometrics [1], Biomegroblem. Two main kinds of Jacobi-like algorithms have been
ical Engineering [2] or Chemometrics [3]. Thanks to its developed based on either thipR factorization [13] or the
uniqueness property [4, 5], the CP decomposition (for CAN-Polar decomposition [14, 15] od. The latter approach gen-
DECOMP/PARAFAC) [1, 6] is probably the most popular erally offers better convergence properties [14].
nowadays. We propose here a third Jacobi-like approach, based on

Many iterative algorithms have been proposed to computfe LU factorization of the eigenvector matrix and we show
the CP decomposition. One of the most famous resorts that the iterative optimization is then reduced to the defoc
an iterative Alternating Least Squares (ALS) procedure [6]ONly one triangular matrix.
However these approaches suffer from classical conveegengefinition 1 A unit matrix is a matrix whose all diagonal el-
problems (local minima, slow convergence or high computagments are equal to 1.
tional cost per iteration). Recently, an Enhanced Line Sear N
(ELS) [8] procedure has allowed to confine this disadvantag®efinition 2 An elementary triangular matrix L) (a)isa
but their still exist some simple cases for which any itera-unit triangular matrix whose non-diagonal components are
tive algorithm fails [7]. An other approach is to rephrase th zero except the (i, j)-th one, which is equal to a.

CP decomposition as a joint diagonalization problem [S, 9, A generalization of theLU factorization easily shows
10]. Notably, the "Closed Form Solution” (CFS) presenteqnat any non-singular square matrik can be factorized as
in [9] and [10] resorts to the Joint EigenValue Decomposi-4 — LV AII whereL is a unit lower triangular matrixy’
tion (JEVD) of a set of non-defective matrices. These metha unit upper triangular matrixA a diagonal matrix andlI a
ods could be called semi-algebraic since they algebrgicallpermutation matrix. Thereby, due to the indeterminacies of
rewrite the CP problem into a more classical matrix problemthe JEVD problem, the matrixd solving (1) can be chosen
which is then iteratively solved by means of a Jacobi-like-pr 0f the form A = LV without loss of generality. The JEVD
cedure. However they generally involve some strongest hy2roblem is then reduced to find a unit lower triangular matrix
pothesis to work. Hence, CFS requires that the rank of thé @nd a unit upper triangular matrix verifying:
considered tensor does not exceed two of its dimensions. Vke [ K]y, L'MPL =vD®y1, )

We propose here a new formulation of the CP decompo-
sition as a JEVD problem, leading to a novel semi-algebraicwhere thek matricesR"™) = VD™V~ are upper tri-
solution, named SALT (Semi-ALgebraic Tensor decomposi@ngular. As a consequendeperforms the joint triangular-
tion) which does not impose this limitation. At this occa- ization of each matrix® ). Let us propose a Jacobi-like
sion we first propose an original Jacobi-like JEVD algorithm procedure to identify it, based on the following lemma:



Lemma 1 Any unit lower triangular matrix L of size (N x
N) can be factorized as a product of M = N(N — 1)/2
elementary lower triangular matrices.

The proof is skipped due to the lack of space. Now by takin
into account that elementary lower triangular matrices-com
mute, equation (2) and lemma 1 yield:

I {@m }mep;m, such that vk € [1; K],
M

RY =] (L(m)(xm))

m=1

. M
M H L<m)(xm), (3)
m=1

where each indexn corresponds to a distinct couplé )
(I < j < i < N). As a consequence, ideally, we have to
found onlyM parameters,,, to triangularize thé{ matrices
M®)  Instead of simultaneously identifying thek&param-
eters, a Jacobi-like procedure will repeat several sequehc
M sequential optimizations until convergence, each opamiz
tion with respect to only one parameter. A sequence/aip-
timizations is generally called a sweep. Thereby, we thek lo
for a matrixL of the formL = []0"_, [T, L") (als),
whereNj is the number of sweeps.

V(k,m,ns) € [1; KN, X[2; M]n, X[1; Ns]n, we define:

MNs
mm

M(k,o,l) M<k) (4)
-1
ptttne) (M) MEMmeI LD ) (5)
Mg Fmans) (L(m) (y:;s))*l M(k,m—l,ns)L(m)(yzf)

(6)
A natural criterion to compute the optim@ah, n )-th param-
eterz)y is

V(m,ns) € [1; M]n, X[L; Nsn, 27 = Argmin, e (57" (ym)) »

with,

N—-1 N

=Y Y (aaftymr)’
=

=1 g=1 p=q+1

The components o *™ ") are deduced from those of
M Em=1me) within only a few computations. This is an ad-
vantage of using th&U factorization. Indeed, equations (4)-
(6) yield for any(k, m,ns) € [1; K|n, x[1; M]n, X[1; Ns|n:

M}S’;,m,ns) _ M}(}I;,m—l,ns) if p#iandg # J,
M}S’;,mﬁls) — —y:,L.LSM;(I;’m_LnS) + M}(}Z;’m—l,"s)
if p=1andq # j,
k,m,ng ng km—1,ng k,m—1,ng
Mzgq )= Ym M;Si ) + Mzgq )
if p#£iandg =7,
Mi(;@,mﬁls) — _ (y;l;)2 M}f,m—lﬁls) + Mi(f’m_l’"S)

MKk,mfl,nS)

11

Jyne ( -~ M;;;,m—l,m)

by sequentially minimizing theV, M criteria (" "< and we
deduce the estimate of each upper triangular maki%’
from (3).
We now show how the unit upper triangular mat¥ixcan
e algebraically computed from the set of matrid@d) =
Vv D®V 1 Such a computation is achieved component by

component. The relationship betwe&i*), v and D)
yields:

Y(i, ) € [1; NI, (R(k)V) = (VD(M>

2% 4

So we haverk € [1; K|n, V(i,j) € [1; N3 with i < j

J
k
> R Ve

p=i+1

(D®) ~ R Y Vi, = @)
Since D™ is actually the diagonal matrix of eigenvalues
of R® and sinceR™") is a triangular matrix, the diagonal
components ofD™ are known and equal to the diagonal

components oRR®). Then the left-hand side of (7) becomes
(Rfj) _ Rﬁ)) Vi ;. Now, let:

J
af” =R —RY and b7 = " RY

P
p=i+1

Vp,j

be thek-th components of vectors(*7) andb(™7), respec-
tively. Then equation (7) can be rewritten as follows:

V(i,5) € [1; N, i < j, Viya®? =07

Thereby, the identification df; ; in the least square sense is
given by:
DT plid)

.. 2 . .
V(i,j) € [ N]n, i <34, Vij = et

®)
For a givenj, the use of (8) requires to scan the values of
from j — 1 to 1 for a given value of. Indeed b ~19) only
depends orV; ; which is equal to 1. Consequently, from (8),

we can computé&’;_; ;, then we deducé’~>7) and so on.
Columns ofV" are obtained by repeating this process foyall
in [1; N]n. We finally computeA from L andV'.

3. A SEMI-ALGEBRAIC CP DECOMPOSITION

The CP decomposition states that for apyorder tensor (or
Q-way array)7 of size (1 x --- x Ig), it exists a minimal
integerR such that7” can be exactly decomposed as:

R

Vg € [1;Qln, Vig € [ Igln, Toyyiiq =

r=1

(1) Q
X! "'Xi(Q,)w

9)

WhereX(l), e ,X(Q) defines "factor" matrices of size

Consequently(™ "= can be expressed as a fourth degredl; x R)--- (Ig x R). Ris called the tensor rank. The prob-

Ns

polynomial in variabley;’s and thus easily minimized by
computing the roots of its derivative. Finalll; is estimated

lem is thus to find th&) factor matrices froni/". we define
ﬂ-g:IaIa+1"'Ib



Tensor dimensions can be merged in order to store all tenwhere A172) — ¢(i)ig(i2) gre diagonal matrices. As a
sor entries in a single "unfolding" matrix. Obviously, teer result, W~ performs the JEVD of the set of matric€
are many possible unfolding matrices. This choice has an iMgnich are full rank. Assuming thaX (@) has at least two
pact on the algorithm restrictions and performances. 'FherefineS whose all entries are non-zero (hypothekig, this
fore, in order to cover all the possibilities, we introduc®a . T : !
parameter and merge the tensor dimensions in order that fggbset IS not empty an’ can thug be eSt'mateg by the

belonaing to1: =7 e T(p B T algorithm. Then one can immediately ded¥tg ™’ and
a'ny (m7n) ehonglng ¢ 77T1 ][N X [ 77TP+1]N7 ( )m,n - Y()?,P+1) from (10)
i1 io s WIth: . ) | .
Tirisia At this stage, column of YV can be reshaped into
P ) Q ) a P-order, rank-1 tensoy’y” whose factor vectors are
m=ir+Y (ig— Dl s n=irp+ D (g - Db the r-th columns of matricesXx™ ... X)) Thereby a
7=2 a=P+2 simple rank-1 HOSVD [16] ofy;'"’ provides a direct esti-
Note that all the other unfolding matrices can be merely obmation of:cS.l) . -:cﬁ.P). In the same way, the columnof

tained by permuting the tensor dimensions and changing thg' """ can be reshaped in @ — P)-order, rank-1 ten-

P value. Then by using the Khatri-Rao product denotedby g Y27+ whose factor vectors are theth columns of

and after some straightforward computations the CP equatio .

estimated from the rank-1 HOSVD Q¢ "*". Finally, we

T(P) = (X‘P) ®- 0 X(l)) (X<Q) ®- 0 X<P+1))T have just to repeat both operations for all thealues to solve
the problem.
We must choose a permutation of the tensor dimensions
We now define matri”z:* by: and aP value that ensuré{;, H, andHs. Otherwise, the
SALT algorithm fails. This condition is necessary and gener
Y =xPoxr Ve .. ox@ ically [5] sufficient to compute the CP decomposition using

the SALT algorithm. It is worth mentioning that this condi-
tion becomes weak for high order tensors. Notably, at orders
higher than 3, it does not require that the rank of the con-
Let assume thak < min(rn?, ng) (hypothesisH;) and  sidered tensor does not exceed two of its dimensions such as
USVT be the singular value decompositionBf P) trun-  the CFS algorithm. Note tha{; and#, leads to maximize
cated at order?. Thus it exists an invertible square matrix min(r?, ﬁglll), In practice several candidates often fulfill
W of size(R, R) such that: the condition, we then propose to place at the end, the ten-
Py (@PDT  vere1 s sor dimension that maximize the number of matrices to be
Yy =UWandYy =W SV.. (10  gjagonalized in order to increase the reliability of the MDT

so that
(P,1) ,P+1)T
T(p) =Y EVY@FoT,

procedure.
Recalling thaty @ "*V = X9 o Y@~ ""* and using
the definition of the Khatri-Rao producY "7 can be 4. NUMERICAL RESULTS
seen as an horizontal block matrix:
Y()?,PJrl)T _ [(ﬁ(l)y(}?*l,PJrl)T’ . 7¢<IQ>Y<}?71,P+1>T 7 4.1. Performances comparison of the JET algorithm
) ; _ - (1) The JET algorithm is compared to the sh-rt [14] and JUST
where '), ... @) are thel, diagonal matrices built [15] methods by means of Monte-Carlo (MC) simulations.
from the I, rows of matrixX(Q). As a consequence, equa- Entries of the eigenvectot and diagonal matrice®*) are
tions (10) and (11) yield: randomly drawn according to a standard normal distribution
. . o A Gaussian white noise is added to the matrix set to be jointly
SV = [I‘ g, T ] ) diagonalized. Algorithms are evaluated according to a nor-
malized root mean squared error on the estimated eigenvecto
where matrix and denoted by, . We vary the SNR from0 dB t0 70

dB wheread< andN are fixed tol0 and5, respectively. The
median value of 4 obtained from the 100 MC runs is plotted
All matricesT"® and matrixy @17+ fsi Q-1 on figure 1(a). It appears that & dB, JET and sh-rt algo-

ma nce_s an ma;z(l X a,re of size{mp> .y x rithm provide very closed results. Conversely, beybddB,
R). Assuming that? < 5, (hypothesisi,), thenthey all  1he JET algorithm consistently outperforms both techrque
admit a Moore-Penrose matrix inverse and we define for anjased on the polar decomposition.

couple(iy, i2) belonging tdl; Q)3

Vie [LIgln, TV =Y @ P eOwT,

el — pluipta) 4.2. Performance comparison of the SALT algorithm

(i1,i2)  _ —T (118 (Q—1,P+ 1)ty (Q—1,P+1) 4 (i2)
emn = W T‘ﬁ' 1' Yx Yx W, We have compared SALT with the CFS and ALS-ELS algo-
= W AW’ rithms. Implemented versions of SALT and CFS resort to the
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(a) The JEVD problem. (b) CP decomposition with correlated factors. (c) CP decomposition of six order tensors.

Fig. 1. JEVD and CP decomposition algorithm comparison. Evolutibthe estimation errors.

JET algorithm to solve the JEVD problem. The ELS proce-  of Eckart-Young DecompositionPsychometrika, 35 (3), 283-
dure is run every 3 ALS iterations. Each algorithm gives for 319 (1970).
each factor matrix a normalized root mean squared estimd2] H. Becker, P. Comon, L. Albera, M. Haardt and I. Merlet, iM

tion error whose median values are computed from 100 MC  tiway Space-Time-Wave-Vector Analysis for Source Loaaliz
. ) . . . tion and Extraction,” irEUSPCO 2010, Aalborg.
experiments and by denotegf . Our estimation criterion is (3] R Bro, “PARAFAC, Tutorial and Applications,” Chemom.

then: rx = 52, ¢ The SALT algorithm should be Intel. Lab. Syst., 38, 149-171 (1997). |
particularly interesting in two cases: when some columns if#l J- B. Kruskal, “Three-Way Arrays: Rank and Uniqueness of
the factor matrices are almost collinear and/or when thecten Ig"ggalr 3%“1%';‘505“'0”5’ Linear Algebra and Applications,
order is high. In the first case, iterative algorithms havt-di , 95-138 ( )-

) . .. RS " 5] L. De Lathauwer, “A Link between Canonical Decompositia
culties to avoid local minima. This is highlighted by our firs Multilinear Algebra and Simultaneous Matrix Diagonalizat”

simulation: The CP of a third order tensor of sideq 4 X 4) SIAM Journal on Matrix Analysis, 28 (3), 642-666 (2006).
and rank 3. Two columns of the random factor matrices arg6] R. Harshman, “Foundations of the Parafac procedure: éod

correlated. A white Gaussian noise is added and we vary the and conditions for an explanatory multimodal factor analys
SNR from100 to 10 dB. rx values are plotted on figure 1(b). UCLA Working Papersin Phonetics, 16, 1-84 (1970).

We also notice that SALT performs slightly better than CFS.[7] P. Comon, X. Luciani and A.L.F. De Almeida, “Tensor Decom
In the second case one can take benefit of the tensor dimen- POSitions, Alternating Least Squares and other Talésiirnal
sions to easily ensure the necessary condition and choese t[b] of Chemometrics, 23 (9), 393-405 (2009).

. - ; 7 . M. Rajih, P. Comon and R. Harshman, “Enhanced Line Search
more suitable unfolding matrix. This is pointed out by our ™ " Novel Method to Accelerate PARAFACSAM Journal on
second simulation for which we consider a 6-order tensor of MatriXAna]ysis and Applications, 30 (3), 1148-1171 (2008).

dimensions4 x 4 x 4 x 4 x 4 x 8). The SNR is sett60  [9] F. Roemer and M. Haardt, A closed-form solution for Paral
dB, factors are uncorrelated, the SALT paramélds set to lel Factor (PARAFAC) Analysis, In IEEE ICASSP 2008, 2365-
3 and we vary the tensor rank from 2 to 8. Results are plotted 2368.

on figure 1(c). In this case, CFS cannot go beyond the ranit0] F. Roemer and M. Haardt, A closed-form solution for ritiu

4 because of its necessary condition while ALS-ELS results _ear PARAFAC decompositions, In IEEE SAM 2008, 487-491.

are unpredictable. Conversely, SALT offers satisfyingitiss 111 L. De I]:a:]haléwer, B. [I)?D Moor and J. \ﬁmc'i/?walle, f“C%mpul'
whatever the considered rank. tation of the Canonical Decomposition by Means of a Simul-

taneous Generalized Schur Decompositio8,AM Journal on
Matrix Analysis and Applications, 26, 295-327 (2001).
5. CONCLUSION [12] A.J.van der Veen, P. B. Ober and E. F. Deprettere, “Azimu

and elevation computation in high resolution DOA estimatio

Our contribution is twofold. Indeed we have proposed a _ |EEE Trans Sgnal Proc. 40, 1828-1832 (1992).

new semi-algebraic approach for the CP decomposition alorig3! M._Faardft and J'lA' Nossek, . .S'm“'tt"’.‘”eouts SC?}‘.” deco[[n-

with an original JEVD algorithm. Combined together, these ~ POS!on of Several nonsymmetric: matrices 1o acnieve auto-

. - o . matic pairing in multidimensional harmonic retrieveal ipro
methods define a reliable CP decomposition algorithm called y
. . ; - lems,” |IEEE Trans. Sgnal Proc. 46, 161-169 (1998).
SALT. Simulation results show i) the efficiency of our JEVD [14] T. Fu and X. Gao, “Simultaneous Diagonalization witmSi
algorithm and ii) that SALT can favorably replace reference " jjarity Transformation for Non-defective Matrices,In IEEE

CP decomposition algorithms in several situations, ngtebl ICASSP 2006, 1137-1140.

the case of high order tensors or when two or more factorfi5] R. Iferroudjene, K. Abed Meraim and A. Belouchrani, “ &N

are correlated. Jacobi-like Method for Joint Diagonalization of Arbitrampn-
defective Matrices,” Applied Mathematics and Computation
211, 363-373 (2009)
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