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ABSTRACT
A semi-algebraic algorithm based on Joint EigenValue De-
composition (JEVD) is proposed to compute the CP de-
composition of multi-way arrays. The iterative part of the
method is thus limited to the JEVD computation. In addition
it involves less restrictive hypothesis than other recent semi-
algebraic approaches in many situations. We also propose
an original JEVD technique based on theLU factorization.
Numerical examples highlight the main advantages of the
proposed methods to solve both the JEVD and CP decompo-
sition problems.

Index Terms— Tensor, CP, PARAFAC, joint eigenvalue
decomposition, semi-algebraic method.

1. INTRODUCTION

Tensor or multi-way array decompositions are used in nu-
merous application areas such as Psycometrics [1], Biomed-
ical Engineering [2] or Chemometrics [3]. Thanks to its
uniqueness property [4, 5], the CP decomposition (for CAN-
DECOMP/PARAFAC) [1, 6] is probably the most popular
nowadays.

Many iterative algorithms have been proposed to compute
the CP decomposition. One of the most famous resorts to
an iterative Alternating Least Squares (ALS) procedure [6].
However these approaches suffer from classical convergence
problems (local minima, slow convergence or high computa-
tional cost per iteration). Recently, an Enhanced Line Search
(ELS) [8] procedure has allowed to confine this disadvantage
but their still exist some simple cases for which any itera-
tive algorithm fails [7]. An other approach is to rephrase the
CP decomposition as a joint diagonalization problem [5, 9,
10]. Notably, the "Closed Form Solution" (CFS) presented
in [9] and [10] resorts to the Joint EigenValue Decomposi-
tion (JEVD) of a set of non-defective matrices. These meth-
ods could be called semi-algebraic since they algebraically
rewrite the CP problem into a more classical matrix problem,
which is then iteratively solved by means of a Jacobi-like pro-
cedure. However they generally involve some strongest hy-
pothesis to work. Hence, CFS requires that the rank of the
considered tensor does not exceed two of its dimensions.

We propose here a new formulation of the CP decompo-
sition as a JEVD problem, leading to a novel semi-algebraic
solution, named SALT (Semi-ALgebraic Tensor decomposi-
tion) which does not impose this limitation. At this occa-
sion we first propose an original Jacobi-like JEVD algorithm,

called JET (Joint Eigenvalue decomposition algorithm based
on Triangular matrices).

2. JOINT EIGENVALUE DECOMPOSITION

In the following, the subset ofN included in[x; y] is denoted
by [x; y]N.

The JEVD problem consists in finding an eigenvector ma-
trix A from a set of non-defective matricesM (k) verifying:

∀k ∈ [1;K]N, M (k) = AD
(k)

A
−1

, (1)

where theK diagonal matricesD(k) are unknown. It can
be shown that the JEVD is unique up to a permutation and
a scaling of the columns ofA within conditions on matrices
D(k) [11].

Although it is encountered in other contexts such as 2-D
DOA estimation [12], few authors have addressed the JEVD
problem. Two main kinds of Jacobi-like algorithms have been
developed based on either theQR factorization [13] or the
polar decomposition [14, 15] ofA. The latter approach gen-
erally offers better convergence properties [14].

We propose here a third Jacobi-like approach, based on
theLU factorization of the eigenvector matrix and we show
that the iterative optimization is then reduced to the search for
only one triangular matrix.

Definition 1 A unit matrix is a matrix whose all diagonal el-
ements are equal to 1.

Definition 2 An elementary triangular matrix L(i,j)(a) is a
unit triangular matrix whose non-diagonal components are
zero except the (i, j)-th one, which is equal to a.

A generalization of theLU factorization easily shows
that any non-singular square matrixA can be factorized as
A = LV ΛΠ whereL is a unit lower triangular matrix,V
a unit upper triangular matrix,Λ a diagonal matrix andΠ a
permutation matrix. Thereby, due to the indeterminacies of
the JEVD problem, the matrixA solving (1) can be chosen
of the formA = LV without loss of generality. The JEVD
problem is then reduced to find a unit lower triangular matrix
L and a unit upper triangular matrixV verifying:

∀k ∈ [1;K]N, L−1
M

(k)
L = V D

(k)
V

−1
, (2)

where theK matricesR(k) = V D(k)V −1 are upper tri-
angular. As a consequenceL performs the joint triangular-
ization of each matrixM (k). Let us propose a Jacobi-like
procedure to identify it, based on the following lemma:



Lemma 1 Any unit lower triangular matrix L of size (N ×

N) can be factorized as a product of M = N(N − 1)/2
elementary lower triangular matrices.

The proof is skipped due to the lack of space. Now by taking
into account that elementary lower triangular matrices com-
mute, equation (2) and lemma 1 yield:

∃ {xm}m∈[1;M]N such that, ∀k ∈ [1;K]N,
R

(k) =
M
∏

m=1

(

L
(m)(xm)

)

−1

M
(k)

M
∏

m=1

L
(m)(xm), (3)

where each indexm corresponds to a distinct couple (i, j)
(1 ≤ j < i ≤ N ). As a consequence, ideally, we have to
found onlyM parametersxm to triangularize theK matrices
M (k). Instead of simultaneously identifying theseM param-
eters, a Jacobi-like procedure will repeat several sequence of
M sequential optimizations until convergence, each optimiza-
tion with respect to only one parameter. A sequence ofM op-
timizations is generally called a sweep. Thereby, we then look
for a matrixL of the formL =

∏Ns

ns=1

∏M
m=1 L

(m,ns)(xns
m ),

whereNs is the number of sweeps.
∀(k,m, ns) ∈ [1;K]N,×[2;M ]N,×[1;Ns]N, we define:

M
(k,0,1) = M

(k) (4)

M
(k,1,ns) =

(

L
(1)(yns

1 )
)

−1

M
(k,M,ns−1)

L
(1)(yns

1 ) (5)

M
(k,m,ns) =

(

L
(m)(yns

m )
)

−1

M
(k,m−1,ns)L

(m)(yns
m )

(6)

A natural criterion to compute the optimal(m,ns)-th param-
eterxns

m is

∀(m,ns) ∈ [1;M ]N,×[1;Ns]N, xns
m = Argminy

ns
m

(ζm,ns

O (yns
m )) ,

with,

ζ
m,ns (yns

m ) =
K
∑

k=1

N−1
∑

q=1

N
∑

p=q+1

(

M
(k,m,ns)
p,q

)2

The components ofM (k,m,ns) are deduced from those of
M (k,m−1,ns) within only a few computations. This is an ad-
vantage of using theLU factorization. Indeed, equations (4)-
(6) yield for any(k,m, ns) ∈ [1;K]N,×[1;M ]N,×[1;Ns]N:

M
(k,m,ns)
pq = M

(k,m−1,ns)
pq if p 6= i andq 6= j,

M
(k,m,ns)
pq = −y

ns
m M

(k,m−1,ns)
jq +M

(k,m−1,ns)
pq

if p = i andq 6= j,

M
(k,m,ns)
pq = y

ns
m M

(k,m−1,ns)
pi +M

(k,m−1,ns)
pq

if p 6= i andq = j,

M
(k,m,ns)
ij = − (yns

m )2 M
(k,m−1,ns)
ji +M

(k,m−1,ns)
ij

+y
ns
m

(

M
(k,m−1,ns)
ii −M

(k,m−1,ns)
jj

)

Consequentlyζm,ns can be expressed as a fourth degree
polynomial in variableyns

m and thus easily minimized by
computing the roots of its derivative. Finally,L is estimated

by sequentially minimizing theNsM criteria ζm,ns and we
deduce the estimate of each upper triangular matrixR(k)

from (3).
We now show how the unit upper triangular matrixV can

be algebraically computed from the set of matricesR(k) =

V D(k)V −1. Such a computation is achieved component by
component. The relationship betweenR(k), V andD(k)

yields:

∀(i, j) ∈ [1;N ]2N, (R(k)
V
)

i,j
=

(

V D
(k)

)

i,j
.

So we have∀k ∈ [1;K]N, ∀(i, j) ∈ [1;N ]2N with i < j

(

D
(k)
j,j −R

(k)
i,i

)

Vi,j =

j
∑

p=i+1

R
(k)
i,p Vp,j . (7)

SinceD(k) is actually the diagonal matrix of eigenvalues
of R(k) and sinceR(k) is a triangular matrix, the diagonal
components ofD(k) are known and equal to the diagonal
components ofR(k). Then the left-hand side of (7) becomes
(

R
(k)
j,j −R

(k)
i,i

)

Vi,j . Now, let:

a
(i,j)
k = R

(k)
j,j −R

(k)
i,i and b

(i,j)
k =

j
∑

p=i+1

R
(k)
i,pVp,j

be thek-th components of vectorsa(i,j) andb(i,j), respec-
tively. Then equation (7) can be rewritten as follows:

∀(i, j) ∈ [1;N ]2N, i < j, Vi,j a
(i,j) = b

(i,j)
.

Thereby, the identification ofVi,j in the least square sense is
given by:

∀(i, j) ∈ [1;N ]2N, i < j, Vi,j =
a(i,j)T b(i,j)

‖a(i,j)‖2
. (8)

For a givenj, the use of (8) requires to scan the values ofi

from j − 1 to 1 for a given value ofj. Indeed,b(j−1,j) only
depends onVj,j which is equal to 1. Consequently, from (8),
we can computeVj−1,j , then we deduceb(j−2,j) and so on.
Columns ofV are obtained by repeating this process for allj
in [1;N ]N. We finally computeA fromL andV .

3. A SEMI-ALGEBRAIC CP DECOMPOSITION

The CP decomposition states that for anyQ-order tensor (or
Q-way array)T of size (I1 × · · · × IQ), it exists a minimal
integerR such thatT can be exactly decomposed as:

∀q ∈ [1;Q]N, ∀iq ∈ [1; Iq]N, Ti1,··· ,iQ =
R
∑

r=1

X
(1)
i1,r

· · ·X
(Q)
iQ,r,

(9)
whereX(1), · · · ,X(Q) definesQ "factor" matrices of size
(I1 ×R) · · · (IQ ×R). R is called the tensor rank. The prob-
lem is thus to find theQ factor matrices fromT . we define
πb
a = IaIa+1 · · · Ib



Tensor dimensions can be merged in order to store all ten-
sor entries in a single "unfolding" matrix. Obviously, there
are many possible unfolding matrices. This choice has an im-
pact on the algorithm restrictions and performances. There-
fore, in order to cover all the possibilities, we introduce aP
parameter and merge the tensor dimensions in order that for
any (m,n)belonging to[1;πP

1 ]N × [1;πQ
P+1]N, T (P )m,n =

T i1,··· ,iQ ,with:

m = i1 +
P
∑

q=2

(iq − 1)πq−1
1 ; n = iP+1 +

Q
∑

q=P+2

(iq − 1)πq−1
P+1

Note that all the other unfolding matrices can be merely ob-
tained by permuting the tensor dimensions and changing the
P value. Then by using the Khatri-Rao product denoted by⊙
and after some straightforward computations the CP equation
(9) can be rewritten as:

T (P ) =
(

X
(P ) ⊙ · · · ⊙X

(1)
)(

X
(Q) ⊙ · · · ⊙X

(P+1)
)T

We now define matrixY (p,q)

X
by:

Y
(p,q)

X
= X

(p) ⊙X
(p−1) ⊙ · · · ⊙X

(q)

so that
T (P ) = Y (P,1)

X
Y (Q,P+1)

X

T
.

Let assume thatR ≤ min(πP
1 , π

Q
P+1) (hypothesisH1) and

USV T be the singular value decomposition ofT (P ) trun-
cated at orderR. Thus it exists an invertible square matrix
W of size(R,R) such that:

Y
(P,1)

X
= UW and Y

(Q,P+1)

X

T = W
−1

SV
T

. (10)

Recalling thatY (Q,P+1)

X
= X(Q)

⊙ Y (Q−1,P+1)

X
and using

the definition of the Khatri-Rao product,Y (Q,P+1)

X

T can be
seen as an horizontal block matrix:

Y
(Q,P+1)

X

T =
[

φ
(1)

Y
(Q−1,P+1)

X

T

, · · · ,φ(IQ)
Y

(Q−1,P+1)

X

T

]

,

(11)
whereφ(1), · · · ,φ(IQ) are theIQ diagonal matrices built

from theIQ rows of matrixX(Q). As a consequence, equa-
tions (10) and (11) yield:

SV
T =

[

Γ
(1)T

, · · · ,Γ(Q)T
]

,

where

∀i ∈ [1; IQ]N, Γ(i) = Y
(Q−1,P+1)

X
φ

(i)
W

T

.

All matricesΓ(i) and matrixY (Q−1,P+1)

X
are of size(πQ−1

P+1 ×

R). Assuming thatR ≤ πQ−1
P+1 (hypothesisH2), then they all

admit a Moore-Penrose matrix inverse and we define for any
couple(i1, i2) belonging to[1;Q]2N
Θ

(i1,i2) = Γ
(i1)♯Γ

(i2),

Θ
(i1,i2) = W

−T

φ
(i1)♯Y

(Q−1,P+1)♯

X
Y

(Q−1,P+1)

X
φ

(i2)W
T

,

= W
−T

Λ
i1,i2W

T
,

whereΛ(i1,i2) = φ(i1)♯φ(i2) are diagonal matrices. As a
result, W−T performs the JEVD of the set of matricesΘ
which are full rank. Assuming thatX(Q) has at least two
lines whose all entries are non-zero (hypothesisH3), this
subset is not empty andW−T can thus be estimated by the
JET algorithm. Then one can immediately deduceY (1,P )

X
and

Y (Q,P+1)

X
from (10).

At this stage, columnr of Y (P,1)

X
can be reshaped into

a P -order, rank-1 tensorY (1,P )

Xr
whose factor vectors are

the r-th columns of matricesX(1)
· · ·X(P ). Thereby a

simple rank-1 HOSVD [16] ofY (P,1)

Xr
provides a direct esti-

mation ofx(1)
r · · ·x

(P )
r . In the same way, the columnr of

Y (Q,P+1)

X
can be reshaped in a(Q − P )-order, rank-1 ten-

sor Y (Q,P+1)

Xr
whose factor vectors are ther-th columns of

matricesX(P+1)
· · ·X(Q). Hence,x(p+1)

r · · ·x
(Q)
r can be

estimated from the rank-1 HOSVD ofY (Q,P+1)

Xr
. Finally, we

have just to repeat both operations for all ther values to solve
the problem.

We must choose a permutation of the tensor dimensions
and aP value that ensureH1, H2 andH3. Otherwise, the
SALT algorithm fails. This condition is necessary and gener-
ically [5] sufficient to compute the CP decomposition using
the SALT algorithm. It is worth mentioning that this condi-
tion becomes weak for high order tensors. Notably, at orders
higher than 3, it does not require that the rank of the con-
sidered tensor does not exceed two of its dimensions such as
the CFS algorithm. Note thatH1 andH2 leads to maximize
min(πP

1 , π
Q−1
P+1 ). In practice several candidates often fulfill

the condition, we then propose to place at the end, the ten-
sor dimension that maximize the number of matrices to be
diagonalized in order to increase the reliability of the JDTM
procedure.

4. NUMERICAL RESULTS

4.1. Performances comparison of the JET algorithm

The JET algorithm is compared to the sh-rt [14] and JUST
[15] methods by means of Monte-Carlo (MC) simulations.
Entries of the eigenvectorA and diagonal matricesD(k) are
randomly drawn according to a standard normal distribution.
A Gaussian white noise is added to the matrix set to be jointly
diagonalized. Algorithms are evaluated according to a nor-
malized root mean squared error on the estimated eigenvector
matrix and denoted byrA. We vary the SNR from10 dB to70
dB whereasK andN are fixed to10 and5, respectively. The
median value ofrA obtained from the 100 MC runs is plotted
on figure 1(a). It appears that at10 dB, JET and sh-rt algo-
rithm provide very closed results. Conversely, beyond10 dB,
the JET algorithm consistently outperforms both techniques
based on the polar decomposition.

4.2. Performance comparison of the SALT algorithm

We have compared SALT with the CFS and ALS-ELS algo-
rithms. Implemented versions of SALT and CFS resort to the
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Fig. 1. JEVD and CP decomposition algorithm comparison. Evolution of the estimation errors.

JET algorithm to solve the JEVD problem. The ELS proce-
dure is run every 3 ALS iterations. Each algorithm gives for
each factor matrix a normalized root mean squared estima-
tion error whose median values are computed from 100 MC
experiments and by denotedr(q)X . Our estimation criterion is

then: rX = 1
Q

∑Q
q=1 r

(q)
X . The SALT algorithm should be

particularly interesting in two cases: when some columns in
the factor matrices are almost collinear and/or when the tensor
order is high. In the first case, iterative algorithms have diffi-
culties to avoid local minima. This is highlighted by our first
simulation: The CP of a third order tensor of size (4× 4× 4)
and rank 3. Two columns of the random factor matrices are
correlated. A white Gaussian noise is added and we vary the
SNR from100 to 10 dB. rX values are plotted on figure 1(b).
We also notice that SALT performs slightly better than CFS.
In the second case one can take benefit of the tensor dimen-
sions to easily ensure the necessary condition and choose the
more suitable unfolding matrix. This is pointed out by our
second simulation for which we consider a 6-order tensor of
dimensions (4 × 4 × 4 × 4 × 4 × 8). The SNR is set to50
dB, factors are uncorrelated, the SALT parameterP is set to
3 and we vary the tensor rank from 2 to 8. Results are plotted
on figure 1(c). In this case, CFS cannot go beyond the rank
4 because of its necessary condition while ALS-ELS results
are unpredictable. Conversely, SALT offers satisfying results
whatever the considered rank.

5. CONCLUSION

Our contribution is twofold. Indeed we have proposed a
new semi-algebraic approach for the CP decomposition along
with an original JEVD algorithm. Combined together, these
methods define a reliable CP decomposition algorithm called
SALT. Simulation results show i) the efficiency of our JEVD
algorithm and ii) that SALT can favorably replace reference
CP decomposition algorithms in several situations, notably in
the case of high order tensors or when two or more factors
are correlated.
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