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ABSTRACT

This work addresses the blind identification of complex MIMO
systems driven by complex input signals using a new tensor
decomposition approach. We show that a collection of successive
second-order derivatives of the second generating function of the
system outputs can be stored in a higher-order tensor following
a constrained factor (CONFAC) decomposition. The proposed
decomposition captures the repeated linear combinations involving
real and imaginary components of the MIMO system matrix arising
from the successive differentiation of output’s generating function
derivatives. By exploiting different derivative forms computed at
multiple points of the observation space, an “extended” CONFAC
decomposition enjoying essential uniqueness is obtained. Thanks to
this uniqueness property, a blind estimation of the MIMO system
response matrix is possible.

Index Terms— Blind identification, MIMO systems, generating
function, tensor decomposition.

1. INTRODUCTION

The connection between tensor decompositions and signal
processing has led to several solutions to the blind MIMO
identification problem. When the diversity of the observations is
not sufficient, one can resort to a second class of tensor-based
methods that rely on the multilinearity properties of high-order
statistics (HOS) [1–5]. A large majority of these methods solves
the blind MIMO identification problem by means of the PARAFAC
decomposition of a tensor storing the cumulants of the system
outputs [1, 6–8]. This is the case, for instance, of FOOBI/FOOBI2
[4, 5], and 6-BIOME [3] algorithms, which use 4th and 6th order
output cumulants, respectively, by capitalizing on the parallel factor
(PARAFAC) decomposition [9, 10]. A particular class of blind
identification methods exploiting the second characteristic function
of the system outputs has been proposed in a few works [11, 12].
For instance, in [12], the authors show that partial derivatives of the
second characteristic function can be stored in a symmetric tensor,
the PARAFAC decomposition of which provides a direct estimation
of the mixing matrix up to trivial indeterminacies. In a recent work
[13], we have considered a more general scenario where the inputs
are assumed to be complex.

In this work, we show that the blind MIMO system identification
problem can be addressed by means of a constrained factor
(CONFAC) decomposition [14]. Under the assumption of complex
system matrix and complex input signals, we show that a collection
of successive second-order derivatives of the second generating

function of the system outputs can be stored in a higher-order tensor
following a CONFAC decomposition, which arise by combining
differentiation w.r.t. real and imaginary components of the second
generating function of the system outputs. As we will show, the
profile of 1’s and 0’s of the CONFAC constraint matrices captures
the linear combination patterns involving real and imaginary
components of the successive characteristic function derivatives. By
exploiting different derivative forms, we can obtain an “extended”
CONFAC tensor decomposition which is shown to be essentially
unique under some conditions. Thanks to this uniqueness property,
a blind estimation of the MIMO system response matrix is possible.

Notations: In the following, vectors, matrices and tensors are
denoted by lower case boldface (a), upper case boldface (A) and
upper case calligraphic (A) letters respectively. ai is the i-th
coordinate of vector a and ai is the i-th column of matrix A. The
(i, j) entry of matrix A is denoted Aij and the (i, j, k) entry of
the third order tensor A is denoted Aijk. Complex objects are
underlined, their real and imaginary parts are denoted<{·} and={·}
respectively. E[.] denotes the expected value of a random variable.

2. PROBLEM FORMULATION

We consider a linear MIMO system with K inputs and N
outputs. The system matrix is defined by H = [h1, . . . ,hK ] ∈
RN×K . Define z(m) = [z1(m), . . . , zN (m)]T ∈ RN , s(m) =
[s1(m), . . . , sK(m)]T ∈ RK and n(m) ∈ RN as the mth

discrete-time realizations of the output, input and noise vectors,
respectively, m = 1, . . . , M . According to this model we have:

z(m) = Hs(m) + n(m). (1)

The input signals can be real or complex. Our goal is to estimate
H from the only knowledge of the system output. The approach
presented here resorts to partial derivatives of the second generating
function of the output. Specifically, the problem consists in finding
Ĥ such that Ĥ = HΛΠ, where Λ is a diagonal matrix and Π is a
permutation matrix. The identification of H relies on the following
assumptions:

H1. H does not contain pairwise collinear columns;

H2. The inputs s1, . . . , sK are non-Gaussian and mutually
statistically independent;

H3. The number of inputs K is known.

The second generating function of the system output, Φz , can be
decomposed into a sum of marginal second generating functions of
the inputs, ϕk, k = 1 · · ·K. We start by defining Φz and ϕk in the



complex field. Since generating functions of a complex variable are
defined by assimilating C to R2, the second generating function of
the k-th input ϕk taken at a point x of C can be compactly written as

ϕk(<{x},={x}) = log E[exp(<{x∗sk})]. (2)

Likewise, Φz taken at the point w of CN is defined in R2N .
Denoting x = <{z} and y = ={z}, it can be shown that

Φz(w) = log E[
∏

k

exp(<{wHhksk})], (3)

where hk is the k-th column of H. Using the hypothesis of mutual
statistical independence of the inputs, (2) yields

Φz(<{w},={w}) =
∑

k

ϕk

(
<{wTh∗k},={wTh∗k}

)
. (4)

Finally, by defining A and Ā so that H = A + Ā, we arrive at

Φz(w) =
∑

k

ϕk (g1(w) , g2(w)) , (5)

where w = (u,v) ∈ R2N , u = <{w}, v = ={w} and

g1(w) =
∑

n

Ankun + Ānkvn

g2(w) =
∑

n

Ankvn − Ānkun

Let us define

g : R2N −→ R2

w 7−→ g(w) = (g1(w), g2(w)).

and a mapping ϕk from R2 to R, as

ϕk : R2 −→ R
g 7−→ ϕk(g).

A more compact representation of (5) can thus be obtained:

Φz(w) =
∑

k

ϕk (g(w)) .

Note that defining ϕk and Φz in R2N and R2, respectively, instead
of CN and C2, allows their differentiation.

3. THE CONFAC DECOMPOSITION

For a third-order tensor X ∈ CP×Q×R, the constrained factor
(CONFAC) decomposition of X with F factor combinations is
defined in scalar form as:

Xpqr =

F∑

f=1

F1∑

f1=1

F2∑

f2=1

F3∑

f3=1

Apf1Bqf2Crf3Θf1fΨf2fΩf3f , (6)

with F ≥ max (F1, F2, F3),

where Apf1
.
= [A]p,f1 , Bqf2

.
= [B]q,f2 , Crf3

.
= [C]r,f3 are

entries of three factor matrices A ∈ CP×F1 , B ∈ CQ×F2 ,
C ∈ CR×F3 , respectively, and Θf1f

.
= [Θ]f1f , Ψf2f

.
= [Ψ]f2f ,

Ωf3f
.
= [Ω]f3,f are entries of first-, second- and third-mode

constraint matrices Θ,Ψ and Ω, respectively. These constraint
matrices are full row-rank matrices. In this work, we assume that

the entries of these matrices belong to the set {−1, 0, 1}. Note
that the CONFAC decomposition with Fi = F , i = 1, 2, 3, and
Θ = Ψ = Ω = IF coincides with the F -factor PARAFAC
decomposition [9, 10]. Uniqueness results have been reported in a
recent contribution [15].

The CONFAC decomposition can be represented in an
equivalent matrix form by unfolding the information contained in the
tensor X ∈ CP×Q×R. For instance, it can be shown that the matrix
unfolding X1 ∈ CPQ×R admits the following factorization [14]:

X1 =
(
(AΘ)¯ (BΨ)

)(
CΩ

)T
, (7)

where ¯ is the Khatri-Rao (column-wise Kronecker) product.

4. EXPANDING SECOND-ORDER DERIVATIVES USING
THE CONFAC DECOMPOSITION

For a fixed differentiation order, the number of derivative equations
can be increased by computing partial derivatives of Φz in R
different points of R2N , denoted here as w(r) = (u(r), v(r)),
r = 1 · · ·R. In this work, we limit ourselves to the second-order
case for simplicity, being understood that equations associated with
higher differentiation orders can be similarly obtained.

By successively differentiating (6) twice with respect to u
(r)
p and

u
(r)
q , p = 1, . . . , N , q = 1, . . . , N , r = 1, . . . , R, we get:

∂2Φz(w
(r))

∂u
(r)
p ∂u

(r)
q

=

K∑

k=1

(
ApkAqkG11

rk −ApkĀqkG12
rk

−ĀpkAqkG12
rk + ĀpkĀqkG22

rk

)
, (8)

where

Gij
r,k =

∂2ψk(g(w(r)))

∂gi(w(r))∂gj(w(r))
s = 1, 2 j = 1, 2,

and we have used the fact that G12
rk = G21

rk. Similarly, by
differentiating (6) twice with respect to u

(r)
p and v

(r)
q , yields:

∂2Φz(w
(r))

∂v
(r)
p ∂v

(r)
q

=

K∑

k=1

(
ĀpkĀqkG11

rk + ĀpkAqkG12
rk

+ApkĀqkG12
rk + ApkAqkG22

rk

)
. (9)

Finally, the differentiation of (6) twice with respect to v
(r)
p and v

(r)
q ,

yields:

∂2Φz(w
(r))

∂u
(r)
p ∂v

(r)
q

=

K∑

k=1

(
ApkĀqkG11

rk + ApkAqkG12
rk

−ĀpkĀqkG12
rk − ĀpkAqkG22

rk

)
. (10)

Let {Φz(w
(1)), Φz(w

(2)), . . . , Φz(w
(R))} be the set

containing the second generating function evaluated at R different
points of the observation space, with w(r) = (u(r),v(r)). Define
the three third-order tensors XΦ1 ∈ CN×N×R, XΦ2 ∈ CN×N×R

and XΦ3 ∈ CN×N×R storing the second-order derivatives of
Φz(w

(r)) w.r.t. (up, uq), (vp, vq) and (up, vq), respectively, as:

XΦ1
pqr

def
= ∂2Φz(w(r))

∂u
(r)
p ∂u

(r)
q

, XΦ2
pqr

def
= ∂2Φz(w(r))

∂v
(r)
p ∂v

(r)
q

,

XΦ3
pqr

def
= ∂2Φz(w(r))

∂u
(r)
p ∂v

(r)
q

(11)



We call XΦ1 , XΦ2 and XΦ3 simply as “derivative tensors” that
result by successively differentiating the second generating function
of the outputs in three different manners. Let A(k) ∈ RN×2 and
G(k) ∈ RR×3, k = 1, . . . , K, be defined as:

A(k) def
= [Apk Āpk], G(k) def

= [G11
rk G12

rk G22
rk] (12)

Using these definitions, we propose a decomposition of the s-th
derivative tensor XΦs , s = 1, 2, 3, as a sum of K tensor “blocks”,
i.e. XΦs

pqr =
∑K

k=1 XΦs(k)
pqr , where

XΦs(k)
pqr =

4∑

f=1

2∑

f1=1

2∑

f2=1

3∑

f3=1

A
(k)
pf1

A
(k)
qf2

G
(k)
rf3

Θ
(s)
f1fΨ

(s)
f2fΩ

(s)
f3f

(13)

corresponds to CONFAC decomposition blocks that yield the s-th
derivative tensor XΦs ∈ CN×N×R, s = 1, 2, 3, of the system
outputs, with the following first- and second-mode constraint
matrices

Θ(s) =

[
1 1 0 0
0 0 1 1

]
, Ψ(s) =

[
1 0 1 0
0 1 0 1

]
, (14)

s = 1, 2, 3, and the following third-mode constraint matrices

Ω(1) =




1 0 0 0
0 −1 −1 0
0 0 0 1


 , Ω(2) =




0 0 0 1
0 1 1 0
1 0 0 0


(15)

Ω(3) =




0 1 0 0
1 0 −1 0
0 0 0 −1


 . (16)

Note that the k-th tensor block in (13) is given by a sum of
F outer products involving repeated linear combinations of the
columns of real and imaginary parts A(k) and G(k) of the system
matrix. The joint structure of Θ(s), Ψ(s) and Ω(s) determine such a
linear combination pattern and depends on the pair of differentiation
variables with respect to which the second generating function
Φz(w

(r)) is successively derived. The pairs of differentiation
variables are (u

(r)
p , u

(r)
q ), (v

(r)
p , v

(r)
q ) and (u

(r)
p , v

(r)
q ), for s = 1, 2

and 3, respectively. Note also that the first- and second-mode
constraint matrices do not depend on the differentiation variables,
the dependence being confined in the third-mode constraint matrix.

Let us define the block matrices

A = [A(1) | . . . |A(K)] ∈ RN×2K , (17)

G = [G(1) | . . . |G(K)] ∈ RR×3K , (18)

which concatenate the contributions of the K system inputs. Define
also block-diagonal constraint matrices

Θ̄ = IK ⊗Θ ∈ R2K×4K , (19)
Ψ̄ = IK ⊗Ψ ∈ R2K×4K , (20)

Ω̄(s) = IK ⊗Ω(s) ∈ R3K×4K . (21)

With these definitions, we can treat the derivative tensors XΦs ∈
CN×N×R, s = 1, 2, 3, as a block CONFAC decomposition with K
blocks. we can deduce the following correspondences:

As shown in (8), (9) and (10), three different types of
second-order derivatives can be obtained from the second generating
function of the system outputs. These derivatives yield respectively,
the CONFAC tensors XΦ1 ∈ CN×N×R, XΦ2 ∈ CN×N×R

and XΦ3 ∈ CN×N×R each one having a particular constrained
factorization structure, the difference being defined by the
third-mode constraint matrix Ω̄s, s = 1, 2, 3. Here, we take all the
three types of second-order derivatives into account by constructing
an equivalent fourth-order CONFAC tensor X̄ ∈ RN×N×R×S ,
the fourth mode of which collects the three types of second-order
derivatives. Let X̄p · · s ∈ RN×R, X̄· q · s ∈ RR×N , and X̄· · r s ∈
RN×N , be three matrix slices of X̄ , each of which obtained by fixing
two (out of the four) indices of X ∈ RN×N×R×S . We propose
to stack row-wise these matrix slices into the following “extended”
matrix unfolding:

X̄1 = [X̄T
1 · · 1, . . . , X̄

T
N · · 1, X̄

T
1 · · 2,

. . . , X̄T
N · · 2, X̄

T
1 · · 3, . . . , X̄

T
N · · 3]

T ∈ R3N2×R (22)

After some algebraic manipulations, we can rewrite X̄1 in CONFAC
form, as follows:

X̄1 =
(
(ÃΘ̃)¯ (AΨ̃)

)
(GΩ̃)T , (23)

where

Ã = I3 ⊗A ∈ C3N×6K , (24)
Θ̃ = I3 ⊗ Θ̄ ∈ C6K×12K , (25)
Ψ̃ = 1T

3 ⊗ Ψ̄ ∈ C2K×12K , (26)

Ω̃ =
[
Ω̄(1), Ω̄(2), Ω̄(3)

]
∈ R3K×12K , (27)

and Θ̄, Ψ̄, Ω̄(s), s = 1, 2, 3 are defined in (19), (20) and (21),
respectively. Note that (23) follows a CONFAC decomposition. By
analogy with (7) we can deduce the following correspondences:

(A,B,C) ↔ (Ã,A,G), (Θ,Ψ,Ω) ↔ (Θ̃, Ψ̃, Ω̃),

(F1, F2, F3, F ) ↔ (6K, 2K, 3K, 12K),

(P, Q, R) ↔ (3N, N, R).

5. UNIQUENESS

Let us rewrite (23) as

X̄1 = (I3 ⊗A⊗A)TGT (28)

with T = [T(1)T ,T(2)T ,T(3)T ]T and

T(s) = (Θ̄¯ Ψ̄)Ω̄(s)T , (29)

s = 1, 2, 3. Recall that A = [A(1) | . . . |A(K)] where A(k) =

[a(k), ā(k)] ∈ CN×2. Denote M(A) ∈ CN(N−1)/2×K(K−1)/2 as a
matrix containing all distinct 2× 2 minors of A.

Theorem 1: Let G be full column-rank and let A not have all-zero
columns. Then (A,G) in CONFAC model (23) are unique up to
trivial indeterminacies if the following conditions hold:

(i) The matrix (I3 ⊗A⊗A) T is full column-rank;

(ii) The 2K columns (a(k)⊗a(k)+a(k)⊗ ā(k)) , (a(k)⊗a(k)−
a(k) ⊗ ā(k) − 2 ā(k) ⊗ a(k)), k = 1, . . . , K, are linearly
independent;

(iii) For Ã = [a(1) a(2) . . . a(K)], the matrix M(Ã) ¯M(Ã)
is full column-rank.

Note that the full column-rank assumption for G implies R ≥ 3K.
This restriction is not severe since R is the number of included points
of the observation space. The proof of the conditions of Theorem 1
are not provided here due to lack of space and will be provided in
an extended version of this contribution. It is worth noting that these
conditions are easy to check in an appropriate software package.



6. NUMERICAL EXPERIMENT

The blind estimation of the MIMO system matrix is based on
the alternating least squares (ALS) algorithm [10]. It consists in
alternating between the estimations of A and G according to the
following least squares (LS) optimization criteria:

Ĝ(i) = argmin
G

∥∥∥X̄1 − (A(i−1)Θ̃)¯ (A(i−1)Ψ̃)Ω̃T GT
∥∥∥

F

Â(i) = argmin
A

∥∥∥X̄2 − ((A(i−1)Ψ̄)¯ ((I3 ⊗G(i))Ω̄))Θ̄T AT
∥∥∥

F

Â(i+1) = argmin
A

∥∥∥X̄3 − (((I3 ⊗G(i))Ω̄)¯ (A(i)Θ̄))Ψ̄T AT
∥∥∥

F

where

X̄2 = [X̄T
· 1 · 1, . . . , X̄

T
· 1 · 3, X̄

T
· 2 · 1, . . . , X̄

T
· 2 · 3,

. . . , X̄T
·N · 1, . . . , X̄

T
·N · 3]

T ∈ R3NR×N , (30)

X̄3 = [X̄T
· · 1 1 . . . , X̄T

· ·R 1 X̄T
· · 1 2

. . . , X̄T
· ·R 2, X̄

T
· · 1 3, . . . , X̄

T
· ·R 3]

T ∈ R3NR×N .(31)

After convergence, an estimate of the complex MIMO system matrix
is obtained by Ĥ = Âconv(IK ⊗ [1  ])T , where Âconv is the
estimate of A after convergence. Figure 1 shows a preliminary
numerical result considering a generic data tensor built from
randomly generated matrices A and G following the CONFAC
model (23). The root mean square error (RMSE) for the estimated
system matrix is plotted as a function of the signal to noise ratio
(SNR) for N = 3, K = 2, and R = 8. The RMSE is calculated as:

RMSE(H) =

√√√√ 1

NK

L∑

l=1

‖Ĥ(l) −H‖2F ,

where Ĥ(l) is the estimated system matrix at the l-th run, and
L = 200 is the total number of runs.

7. CONCLUSION

The problem of blind identification of complex MIMO systems
driven by complex input signals can be addressed by resorting to
the CONFAC decomposition. By combining three types of output
second-order generating function derivatives taken at different points
of the observation space, an extended CONFAC decomposition can
be formulated. The essential uniqueness of this decomposition
allows the blind estimation of the system matrix. The use of a more
efficient estimation algorithm and comparisons with competing
methods will be addressed in an extended version of this work.
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